I've said several times in this thread and elsewhere that you won't notice the difference between however you choose to tune your antenna, included in that quoted post. Part of the point of the thread was to challenge a concept that is widespread but no one has ever demonstrated before.
The models were done in 4nec2, however, the data was converted to data in Libreoffice Calc (essentially a spreadsheet like excel) as I later added data that the modeling software did not have the ability to add. That data came from this web site. On the chart that compares raw gain to gain after the effects of an impedance mismatch of two different pieces of feed line with different loss characteristics.
There are no matching circuits here. I am well aware of how they work, but they are not relevant here. There are a group of antennas that don't use matching circuits, and those are the antennas targeted in this post. The model was a center fed dipole. The resonance equals maximum gain is a claim on antennas that are not used with matching circuits, such as the dipole (modeled above) or any number of mobile CB antennas and others, a claim that I not only couldn't find any evidence to support, but all the evidence I have actually found disagree with. This thread was more or less challenging that concept with evidence.
Could you add a matching circuit to these antennas? Yes, but how many people actually do?
This is absolutely true. Let me repost a pic from that post here.
[ATTACH=full]68801[/ATTACH]
This chart shows not only the raw gain data of the 4nec2 modeling software, but the effects on said gain after factoring in the feed point impedances plus, for the red line 35 feet of LMR-400, and the yellow line we used 100 feet of LMR-400. The impedance data was provided by the coax loss calculator on the QSL.net web site. The whole point of this was to show that happens when you have a changing impedance over a frequency range, and a feed line added in.
Taking that, and adding in the data from this image (also from said post) which shows the gain of the antenna from the modeling software in relation to its SWR.
[ATTACH=full]68802[/ATTACH]
The blue line is the same gain from the image above, its values are on the left of the image. The red line is SWR, its values are on the right of the image.
These two pictures together demonstrate that once you have an impedance mismatch, and some length of feed line, the peak gain of the antenna system moves towards the low SWR point (not the resonant point). The more loss in said coax (and it doesn't take much) the more this effect pushes the max gain point towards the low SWR point.
*****
And I feel I should add in again, for the umpteenth time, in the so called "real world" and really in generally accepted "theory" as well, when it comes to tuning you will not notice the difference between any of these tuning points, so use what you want, it really doesn't matter. There is no need to get fancy equipment and tune for this or that (such as resonance for in my case, peak field strength) unless you are having difficulty tuning said antenna. If you just want to make contacts and have conversations, local or otherwise.
The DB