http://www.radiomanual.info/schemi/ACC_antenna/Avanti_Astro-plane_AV-101_patent_US3587109_1971.pdf
page 4 line 63 to page 5 line 10. see conductor or element #14 in figures 2, 5 and 6.
"Indeed the antenna construction substantially counteracts the tendency of prior art antennas to tilt the radiated signals substantially upwardly. A polar diagram showing the radiation characteristics of the antenna of FIG. 2 is shown in FIG. 7. Performance tests resulting in the diagram of FIG. 7 were run. For one such test, an antenna scaled down to proportionate wavelength dimensions for operation at 146 megahertz was prepared. Thus the first conductor or mast 14 was 33.5 inches in length. The distance between levels A and B was 17.75 inches and the conductor 46 (unloaded) was 15.75 inches. Conductors 16 and 18 flared outwardly as described herein. The pattern was measured at a distance of about 100 feet from the antenna."
"It is seen that the beam at maximum strength is tilted upwardly from horizontal only about 5° and that the radiation pattern lobes are of an optimum shape. In other tests of the same installation, but with shorter mast lengths of 21.5 inches, 24.5 inches and 27.5 inches it was found that the radiation angle at maximum beam strength tilted upwardly substantially more. The conclusion to be drawn, therefore, was that a mast having a length below level B of about one-quarter wavelength, i.e., about the length of the conductors 16, 18 gave an optimum takeoff angle."
and again, page 6, lines 14-17: "An antenna constructed in accordance with the specific embodiment just described is 12 feet in length (except for the mast which desirably extends at least about 8 feet below level B)"
and again, page 7, lines 13-16: "In the antenna of claim 3 in which said first conducting element extends beyond said second reference plane a distance at least equal to about the distance between said first and second planes." level "A" is the first plane, level "B" is the second plane."
there is no such thing as antenna swr and there are no radials on the astroplane antenna.
page 5, lines 56-60: "The clamping and proportioning provides a significant flare of the conductors 16, 18, (not the loop) which as previously described, influences both takeoff angle and impedance. The takeoff angle and impedance may be varied or altered, as described hereinbefore."
elements 16, 18 and 20 form a quarter wavelength matching section in the form of a stub, they are not being used to collect antenna current and are not part of the antenna radiator. the active radiating antenna is composed of elements 14 and 47, which includes 46, 48 and 50.
an antenna does not "have an swr" or standing wave ratio. standing waves IN A TRANSMISSION LINE are due to reflection from a mismatch at the antenna input IN ANY LINE that is not terminated at the antenna load in its characteristic impedance (Zc), which in this instance would be R=50 jX=0.
if this condition exists then reflection between the source transmitter and the antenna load as well as subsequent standing waves in the line are non-existent, the length of the line has no effect on swr measurements and the line measures R=50 at every point along the line.
if R=50 then the antenna load is "matched" to the line. if X=0 then the antenna load is "tuned" to resonance. swr=1.0: 1 and now you can "use whatever length of feedline that will reach from the source to the load." only under these conditions is this statement accurate.